Headquarters U.S. Air Force

Integrity - Service - Excellence

Section 2 Lines of Evidence Used to Evaluate Natural Attenuation

Presented by

Todd Wiedemeier Parsons Engineering Science, Inc.

todd.wiedemeier@parsons.com (303) 831-8100

Weight of Evidence

□ Independent and Converging Lines of Evidence Should be Used to Document and Quantify Natural Attenuation

Lines of Evidence Used To Evaluate Natural Attenuation

- 1) Historical Database Showing Plume Stabilization and/or Loss of Contaminant Mass Over Time
- 2) Contaminant and Geochemical

 Analytical Data Showing Biodegradation
- 3) Microbiological Laboratory Data
- 4) Models???

Documented Loss of Contaminant Mass at the Field Scale

□ Statistically Significant Historical Database Showing Plume Stabilization and/or Loss of Contaminant Mass Over Time

Total BTEX - 8 feet of LNAPL

Total BTEX Projection

Actual BTEX Migration vs. Time

Total BTEX in Groundwater - Source Removed

Evaluating Plume Stability

□ Statistical Techniques Such As the Mann-Kendall Test Can Be Used To Check for Trends in Analytical Data and to Assess Plume Stability

Relationship Between Contaminants and Geochemistry

 Areas With Elevated Contaminant Concentrations Should/Will Show Elevated Metabolic Byproduct Concentrations and Depleted Electron Acceptor Concentrations

Relationship Between Contaminants and Geochemistry

- □ If Biodegradation is Occurring, Areas With Elevated Contaminant Concentrations Should Show
 - □ Depleted Dissolved Oxygen, Nitrate and Sulfate Concentrations
 - ☐ Elevated Fe(II), Methane, and Possibly Ethene/Ethane Concentrations
 - Lowered Oxidation/Reduction Potential
 - Elevated Chloride Concentrations

Example - Petroleum Hydrocarbon Contaminated Site

- Site Contaminated With Petroleum Hydrocarbons
- ☐ Site Shows Evidence of:
 - □ Aerobic Respiration
 - Denitrification
 - □ Fe(III) Reduction
 - □ Sulfate Reduction
 - Methanogenesis

Total BTEX

Dissolved Oxygen

Total BTEX and Dissolved Oxygen

Total BTEX

Nitrate

Total BTEX and Nitrate

Total BTEX

Fe(II)

Total BTEX and Iron (II)

Total BTEX

Sulfate

Total BTEX and Sulfate

Total BTEX

Methane

Total BTEX and Methane

Total BTEX and Oxidation-Reduction Potential

Summary of Geochemical Indicators of Biodegradation

Example - Site Contaminated With Solvents and Fuel Hydrocarbons

- ☐ Mixture of Chlorinated Solvents and Petroleum Hydrocarbons
- ☐ Site Shows Evidence of:
 - □ Aerobic Respiration, Denitrification,
 Fe(III) Reduction, Sulfate Reduction, and
 Methanogenesis
 - □ Reductive Dechlorination (Halorespiration)

BTEX and Electron Acceptors

BTEX and Metabolic Byproducts

Chlorinated Solvents and Byproducts

Trends During Biodegradation

Analyte	Upgradient (mg/L)	Plume Interior (mg/L)
Oxygen	11	<0.1
Nitrate	0.5	<0.05
Fe(II)	0.0	46
Sulfate	25	<0.05
Methane	<0.001	3.5
Chloride	2	82
Ethene	<0.001	0.182
Hydrogen	0.0	11nM

Additional Relationships

Maps Showing Trends in Alkalinity,
 Carbon Dioxide and Hydrogen
 Concentrations, etc. Also Can be
 Prepared

Geochemical/Daughter Product Evidence of Natural Attenuation

□ Can Provide Very Convincing Evidence of Biodegradation

■ May have Conflicting Data

■ Weight of Evidence is a Must

Microbiological Laboratory Evidence

□ Should Be Used Very Selectively In Accessing Natural Biodegradation

□ Should Only Be Used When A Process Is Not Understood

□ Example - DCE Oxidation

Problems With Microcosms

- □ Laboratory Findings Cannot be Translated Directly to Field Settings
- Anaerobic Biodegradation of Contaminants Results From the Interactions of a Microbial Consortia
- Removing Aquifer Material From Its Original Setting Disrupts the Balance of the Consortia, Which in Turn Inhibits Biodegradation

Screening for Biodegradation (Dehalorespiration) of Solvents

- □ Actual AFCEE/EPA Screening
 Processes is More Detailed
- See EPA/600/R-98/128, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water

ftp://ftp.epa.gov.pub/ada/reports/protocol.pdf

Initial Screening Process Flow Chart

Screening Steps

- 1 Determine if Biodegradation (Halorespiration) is Occurring
- 2 Determine Groundwater Flow and Solute Transport Parameters
- 3 Locate Sources and Receptor Exposure Points
- **4 Estimate Biodegradation Rates**
- 5 Compare Rate of Transport to Rate of Attenuation
- 6 Determine if Screening Criteria are Met

Screening for Biodegradation (Dehalorespiration) of Solvents

 Screening for Reductive Dechlorination Consists of Collecting Samples Inside the Contaminant Plume

Data Collection Points for Initial Screening

LEGEND

Required Data Collection Point Not to Scale Use Data from Points B and C for Biodegradation Screening

Analyze Samples For:

- □ VOC Analysis (8260)
- □ Dissolved Oxygen
- □ Nitrate/Nitrite
- ☐ Fe(II)
- □ Sulfate/Sulfide
- Methane/Ethane/Ethene
- □ Chloride

- Carbon Dioxide
- □ Hydrogen (Optional)
- Total OrganicCarbon
- □ Redox Potential
- □ Alkalinity
- □ pH
- Temperature

Determine if Reductive Dechlorination is Likely Occurring

Use Analytical Parameter Weighting
 System to Determine if Biodegradation
 (Dehalorespiration) is Likely Occurring

- □ Different Portions of the Plume May Exhibit Differing Behavior
 - e.g. Type 1 Environment Near Source with Type 3 Conditions Downgradient

	Concentration	
Analysis	in Plume	Value
Oxygen	<0.5 mg/L	3
	>5 mg/L	-3
Nitrate	<1 mg/L	2
Fe(II)	>1 mg/L	3
Sulfate	<20 mg/L	2
Methane	<0.5 mg/L	0
	>0.5 mg/L	3
ORP	<50mV	1
	<-100mV	2

Analysis	Concentration in Plume	Value
pH	5< pH <9) value
ριι	5> pH >9	-2
TOC	>20 mg/L	2
Temperature	>20°C	1
CO ₂	>2X Background	1
Alkalinity	>2X Background	1
Chloride	>2X Background	2
Hydrogen	<1 nM	0
	>1 nM	3

	Concentration	
Analyte	in Plume	Value
BTEX	>0.1 mg/L	2
PCE	Spilled	0
TCE	Spilled	0
	Daughter Product	2
DCE	Spilled	0
	Daughter Product	2
VC	Spilled	0
	Daughter Product	2
Ethene/Ethane	>0.01 mg/L	2
	>0.1 mg/L	3

	Concentration	Points
Analyte	in Plume	Awarded
1,1,1 TCA	Spilled	0
DCA	Spilled	0
	Daughter Product	2
Chloroethane	Spilled	0
	Daughter Product	2
Carbon Tetrachloride	Spilled	0
	Daughter Product	2
Chloroform	Spilled	0
	Daughter Product	2
Dichloromethane	Spilled	0
	Daughter Product	2

	Concentration	
Analyte	in Plume	Value
Hexachlorobenzene	Spilled	0
Pentachlorobenzene	Spilled	0
	Daughter Product	2
Tetrachlorobenzene	Spilled	0
	Daughter Product	2
Trichlorobenzene	Spilled	0
	Daughter Product	2
Dichlorobenzene	Spilled	0
	Daughter Product	2
Monochlorobenzene	Spilled	0
	Daughter Product	2

Interpretation of Points Awarded During Screening

Score	Interpretation
0 to 5	Inadequate Evidence for Reductive
	Dechlorination of Chlorinated Solvents
6 to 14	Limited Evidence for Reductive
	Dechlorination of Chlorinated Solvents
15 to 20	Adequate Evidence for Reductive
	Dechlorination of Chlorinated Solvents
> 20	Strong Evidence for Reductive
	Dechlorination of Chlorinated Solvents

Strong Evidence for Reductive Dechlorination

	Concentration	Points
Analyte	in Plume	Awarded
Oxygen	0.1 mg/L	3
Nitrate	0.3 mg/L	2
Fe(II)	10 mg/L	3
Sulfate	2 mg/L	2
Methane	10 mg/L	3
ORP	-190 mV	2
Chloride	3 times background	2
PCE (released)	1,000 μg/L	0
TCE (non released)	1,200 μg/L	2
cis-DCE (non released)	2,500 μg/L	2
VC (non released)	5,000 μg/L	2
	Total	23

Inadequate Evidence for Biodegradation

Analyte	Concentration in Plume	Points Awarded
Oxygen	8 mg/L	-3
Nitrate	0.3 mg/L	2
Fe(II)	ND	0
Sulfate	10 mg/L	2
Methane	ND	0
ORP	100 mV	0
Chloride	background	0
PCE (released)	1,000 µg/L	0
TCE (non released)	ND	0
cis-DCE (non released)	ND	0
VC (non released)	ND	0
	Total	1

Limitations of the Screening Method

■ Just Because You Pass the Screening Does NOT Mean that Natural Attenuation Will Work

☐ It Only Means it MAY Work!!

□ Further Investigation is Required

Using Models to Evaluate Natural Attenuation

 □ Although not a Line of Evidence Analytical or Numerical Models can Prove Valuable for Evaluating Natural Attenuation

Using Models to Evaluate Natural Attenuation

- □ Dominant Transport Mechanisms at Many Sites Include
 - □ Advection
 - Dispersion
 - □ Sorption
 - □ Biodegradation

Using Models to Evaluate Natural Attenuation

■ Models can be used to Evaluate the Relative Importance of Natural Attenuation Mechanisms

- □ A Groundwater Flow and Solute Transport Model was used to Compare the Effectiveness of Natural Attenuation to Several Remedial Alternatives
- Modflow Coupled to ModflowT

- □ Complex Model
 - $\Box x = 29,040 \text{ feet}$
 - \Box y = 16,500 feet
 - \Box z = variable but on the order of 200 feet
 - ☐ 21 layers
 - □ 369,600 grid blocks!

□ Natural Attenuation was Compared to 7
 Extraction, Treatment, and Reinjection
 (ETR) Scenarios

□ Some Very Interesting Things Came to Light

	Total VOC Mass Remaining in Modeled Subsurface (kg)				Cost		
Alternative	1998	2008	2018	2028	2038	2048	(Millions)
2 – MNA	2,635	1,404	651	277	120	55.9	3
3A – ETR (ALTERNATIVE E)	2,635	1,186	434	133	37.1	10.4	160
3B – ETR (MODIFIED E)	2,635	1,058	376	130	46.3	17.4	120
3C – ETR (EPA)	2,635	1,054	375	130	45.4	16.3	106
3D – ETR (Cataumet)	2,635	1,300	571	235	97.2	42.8	40
3E – ETR (Warm Spots)	2,635	1,087	399	140	53.2	21.4	71
4A – Protection of Bourne Wells (ETR Modified 3B)	2,635	1,321	596	261	116	54.8	45
4B – Protection of Bourne Wells (ETR)	2,635	1,372	615	249	102	46.3	62

	Peak Total VOC Aquifer Concentration (mg/L)		
Alternative	2018	2048	
2 – MNA	52.7	7.8	
3A – ETR (Alternative E)	53.1	3.2	
3B – ETR (Modified E)	43.6	3.1	
3C – ETR (EPA)	52.7	2.7	
3D – ETR (Cataumet)	53.3	5.1	
3E – ETR (Warm Spots)	52.9	5.2	
4A – Protection of Bourne Wells (ETR Modified 3B)	41.8	6.2	
4B – Protection of Bourne Wells (ETR)	52.8	7.0	

Remedial Alternative	Mass Removed Over Natural Attenuation After 50 years (Kg)	Total Remediation System Cost (dollars)	Cost per Additional Kilogram Removed
MNA	0	3,000,000	0
3A	46	160,000,000	\$3,500,000/Kg
3B	39	120,000,000	\$3,000,000/Kg
3C	40	106,000,000	\$2,650,000/Kg
3D	13	40,000,000	\$3,000,000/Kg
3E	35	71,000,000	\$2,000,000/Kg
4A	1	45,000,000	\$45,000,000/Kg
4B	10	62,000,0000	\$6,200,000/Kg

- □ All of the ERT Systems were Extremely Expensive and Did Almost Nothing to Remediate the Aquifer
- □ In Addition, The ERT Systems did not Afford any Additional Protection of Human Health and the Environment
- □ In Fact, Many of the ERT Systems had Detrimental Environmental Impacts